首页> 外文期刊>Computers & mathematics with applications >The adaptive finite element method based on multi-scale discretizations for eigenvalue problems
【24h】

The adaptive finite element method based on multi-scale discretizations for eigenvalue problems

机译:基于多尺度离散化的特征值问题自适应有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, adaptive finite element methods for differential operator eigenvalue problems are discussed. For multi-scale discretization schemes based on Rayleigh quotient iteration (see Scheme 3 in [Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal. 49 (2011) 1602-1624]), a reliable and efficient a posteriori error indicator is given, in addition, a new adaptive algorithm based on the multi-scale discretizations is proposed, and we apply the algorithm to the Schrodinger equation for hydrogen atoms. The algorithm is performed under the package of Chen, and satisfactory numerical results are obtained.
机译:本文讨论了用于微分算子特征值问题的自适应有限元方法。对于基于瑞利商迭代的多尺度离散化方案(请参见[Y. Yang,H. Bi,基于移位逆幂方法的两网格离散化方案,SIAM J. Numer。Anal。49(2011)中的方案3 1602-1624]),给出了可靠,高效的后验误差指标,此外,提出了一种基于多尺度离散化的自适应算法,并将其应用于氢原子的薛定inger方程。该算法在Chen的软件包下进行,并获得了令人满意的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号