首页> 外文期刊>Computers & mathematics with applications >Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods
【24h】

Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods

机译:基于伴随的流体流量控制和格子Boltzmann方法优化

获取原文
获取原文并翻译 | 示例

摘要

A lattice Boltzmann (LB) framework to solve fluid flow control and optimisation problems numerically is presented. Problems are formulated on a mesoscopic basis. In a side condition, the dynamics of a Newtonian fluid is described by a family of simplified Boltzmann-like equations, namely BGK-Boltzmann equations, which are linked to an incompressible Navier-Stokes equation. It is proposed to solve the non-linear optimisation problem by a line search algorithm. The needed derivatives are obtained by deriving the adjoint equations, referred to as adjoint BGK-Boltzmann equations. The primal equations are discretised by standard lattice Boltzmann methods (LBM) while for the adjoint equations a novel discretisation strategy is introduced. The approach follows the main ideas behind LBM and is therefore referred to as adjoint lattice Boltzmann methods (ALBM). The corresponding algorithm retains most of the basic features of LB algorithms. In particular, it enables a highly-efficient parallel implementation and thus solving large-scale fluid flow control and optimisation problems. The overall solution strategy, the derivation of a prototype adjoint BGK-Boltzmann equation, the novel ALBM and its parallel realisation as well as its validation are discussed in detail in this article. Numerical and performance results are presented for a series of steady-state distributed control problems with up to approximately 1.6 million unknown control parameters obtained on a high performance computer with up to 256 processing units.
机译:提出了一种格子Boltzmann(LB)框架,以数值方式解决流体流量控制和优化问题。问题是介观的。在侧面条件下,牛顿流体的动力学由一系列简化的玻尔兹曼式方程(即BGK-玻尔兹曼方程)描述,该方程链接到不可压缩的Navier-Stokes方程。提出通过线搜索算法解决非线性优化问题。所需的导数是通过推导伴随方程(称为伴随BGK-Boltzmann方程)而获得的。通过标准晶格玻尔兹曼方法(LBM)离散原始方程,而对于伴随方程,引入了一种新颖的离散策略。该方法遵循LBM背后的主要思想,因此被称为伴随晶格玻尔兹曼方法(ALBM)。相应的算法保留了LB算法的大多数基本功能。特别是,它可以实现高效的并行实现,从而解决大规模的流体流控制和优化问题。本文详细讨论了整体解决方案策略,原型伴随BGK-Boltzmann方程的推导,新颖的ALBM及其并行实现以及验证。给出了一系列稳态分布控制问题的数值和性能结果,在具有多达256个处理单元的高性能计算机上获得了多达约160万个未知控制参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号