首页> 外文期刊>Computers & mathematics with applications >Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides
【24h】

Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides

机译:Dupin环上的Yvon-Villarceau圆的计算以及Tori和Dupin环上的圆边直角三角形的构造

获取原文
获取原文并翻译 | 示例

摘要

Ring Dupin cyclides are non-spherical algebraic surfaces of degree four that can be defined as the image by inversion of a ring torus. They are interesting in geometric modeling because: (1) they have several families of circles embedded on them: parallel, meridian, and Yvon-Villarceau circles, and (2) they are characterized by one parametric equation and two equivalent implicit ones, allowing for better flexibility and easiness of use by adopting one representation or the other, according to the best suitability for a particular application. These facts motivate the construction of circular edge triangles lying on Dupin cyclides and exhibiting the aforementioned properties. Our first contribution consists in an analytic method for the computation of Yvon-Villarceau circles on a given ring Dupin cyclide, by computing an adequate Dupin cyclide-torus inversion and applying it to the torus-based equations of Yvon-Villarceau circles. Our second contribution is an algorithm which, starting from three arbitrary 3D points, constructs a triangle on a ring torus such that each of its edges belongs to one of the three families of circles on a ring torus: meridian, parallel, and Yvon-Villarceau circles. Since the same task of constructing right triangles is far from being easy to accomplish when directly dealing with cyclides, our third contribution is an indirect algorithm which proceeds in two steps and relies on the previous one. As the image of a circle by a carefully chosen inversion is a circle, and by constructing different images of a right triangle on a ring torus, the indirect algorithm constructs a one-parameter family of 3D circular edge triangles lying on Dupin cyclides.
机译:Dupin环环化合物是四度的非球面代数曲面,可以通过环面反转来定义为图像。它们在几何建模中很有趣,因为:(1)它们上嵌入了几组圆:平行,子午线和Yvon-Villarceau圆,(2)用一个参数方程式和两个等效的隐式方程式来表征,从而允许根据对特定应用的最佳适应性,通过采用一种表示形式或另一种表示形式,具有更好的灵活性和易用性。这些事实促使构造在杜平环上的圆形边缘三角形并表现出上述特性。我们的第一项贡献在于,通过计算足够的Dupin环数-torus反演并将其应用于Yvon-Villarceau圆的基于环的方程,来计算给定环Dupin环上的Yvon-Villarceau圆的解析方法。我们的第二个贡献是一种算法,该算法从三个任意的3D点开始,在圆环上构造一个三角形,使得其每个边缘都属于圆环上的三个圆形家族之一:子午线,平行线和Yvon-Villarceau界。由于直接处理摆线时,构造直角三角形的相同任务远非易事,因此我们的第三个贡献是一种间接算法,该算法分两步进行,并且依赖于前一步。由于通过精心选择的反演得到的圆的图像是一个圆,并且通过在圆环上构造直角三角形的不同图像,因此间接算法构造了一个位于Dupin摆线上的单参数3D圆形边缘三角形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号