首页> 外文期刊>Computers & mathematics with applications >Nonlinear multigrid methods for second order differential operators with nonlinear diffusion coefficient
【24h】

Nonlinear multigrid methods for second order differential operators with nonlinear diffusion coefficient

机译:非线性扩散系数的二阶微分算子的非线性多重网格方法

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear multigrid methods such as the Full Approximation Scheme (FAS) and Newton-multigrid (Newton-MG) are well established as fast solvers for nonlinear PDEs of elliptic and parabolic type. In this paper we consider Newton-MG and FAS iterations applied to second order differential operators with nonlinear diffusion coefficient. Under mild assumptions arising in practical applications, an approximation (shown to be sharp) of the execution time of the algorithms is derived, which demonstrates that Newton-MG can be expected to be a faster iteration than a standard FAS iteration for a finite element discretisation. Results are provided for elliptic and parabolic problems, demonstrating a faster execution time as well as greater stability of the Newton-MG iteration. Results are explained using current theory for the convergence of multigrid methods, giving a qualitative insight into how the nonlinear multigrid methods can be expected to perform in practice.
机译:非线性多重网格方法(例如,全近似方案(FAS)和牛顿多重网格(Newton-MG))已经很好地建立为椭圆形和抛物线型非线性PDE的快速求解器。在本文中,我们考虑将牛顿-MG和FAS迭代应用于具有非线性扩散系数的二阶微分算子。在实际应用中出现的温和假设下,得出了算法执行时间的近似值(显示得很明显),这表明对于有限元离散化,可以预期牛顿MG比标准FAS迭代更快。 。提供了椭圆和抛物线问题的结果,证明了更快的执行时间以及Newton-MG迭代的更高稳定性。使用当前的理论对多网格方法的收敛性进行了解释,从而对非线性多网格方法在实践中的预期效果给出了定性的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号