首页> 外文期刊>Computers & mathematics with applications >BiCR-type methods for families of shifted linear systems
【24h】

BiCR-type methods for families of shifted linear systems

机译:位移线性系统族的BiCR型方法

获取原文
获取原文并翻译 | 示例

摘要

The shifted linear systems with non-Hermitian matrices often arise from the numerical solutions for time-dependent PDEs, computing the large-scale eigenvalue problems, control theory and so on. In the present paper, we develop two shifted variants of BiCR-type methods for solving such linear systems. These variants of BiCR-type methods take advantage of the shifted structure, so that the number of matrix-vector multiplications and the number of inner products are the same as a single linear system. Finally, extensive numerical examples are reported to illustrate the performance and effectiveness of the proposed methods.
机译:具有非Hermitian矩阵的线性位移系统通常是由时间相关的PDE的数值解,计算大型特征值问题,控制理论等产生的。在本文中,我们开发了BiCR型方法的两个移位变体来解决此类线性系统。 BiCR类型方法的这些变体利用了移位的结构,因此矩阵向量乘法的数量和内积的数量与单个线性系统相同。最后,大量的数值例子被报道来说明所提出的方法的性能和有效性。

著录项

  • 来源
    《Computers & mathematics with applications》 |2014年第7期|746-758|共13页
  • 作者单位

    School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China;

    School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China;

    School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China;

    School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi, 480-1198, Japan;

    School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China;

    School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shifted linear system; Time-dependent PDE; BiCR; Krylov subspace method; Non-Hermitian matrix;

    机译:线性位移系统;随时间变化的PDE BiCR;Krylov子空间方法;非厄密矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号