首页> 外文期刊>Computers & mathematics with applications >A sparse mesh for Compact Finite Difference——Fourier solvers with radius-dependent spectral resolution in circular domains
【24h】

A sparse mesh for Compact Finite Difference——Fourier solvers with radius-dependent spectral resolution in circular domains

机译:紧凑有限差分的稀疏网格-圆域中具有半径相关光谱分辨率的傅里叶求解器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for the resolution of elliptic and parabolic equations in circular domains. It can be trivially extended to cylindrical domains. The algorithm uses a mixed Fourier-Compact Finite Difference method. The main advantage of the method is achieved by a new concept of mesh. The topology of the new grid keeps constant the aspect ratio of the cells, avoiding the typical clustering for radial structured meshes at the center. The reduction of the number of nodes has as a consequence the reduction in memory consumption. In the case of fluid mechanics problems, this technique also increases the time step for a constant Courant number. Several examples are given in the paper which show the potential of the method.
机译:本文提出了一种求解圆域椭圆和抛物方程的新方法。它可以简单地扩展到圆柱域。该算法使用混合傅里叶-紧凑有限差分法。该方法的主要优点是通过网格的新概念实现的。新网格的拓扑结构使单元的长宽比保持恒定,从而避免了中心处径向结构网格的典型聚类。结果,节点数量的减少具有存储器消耗的减少。在流体力学问题的情况下,此技术还会增加恒定Courant数的时间步长。本文给出了几个例子,说明了该方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号