首页> 外文期刊>Computers & mathematics with applications >Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress
【24h】

Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress

机译:剪切稀化非牛顿流体系统的拓扑优化,以最大程度地减小壁面剪应力

获取原文
获取原文并翻译 | 示例
           

摘要

This paper suggests the topology optimization process to minimize wall shear stress by considering shear thinning non-Newtonian fluid effects in the systematic design of fluidic systems dealing with blood. Topology optimization was originally developed for mechanical design problems, and within the last decade the method has been extended to a range of fluidic applications. In this paper, the Carreau-Yasuda constitutive equation model is used for shear thinning non-Newtonian fluid modeling. The fundamental idea is that the material density of each element or grid point is a design variable, thus, the geometry is parameterized in a pixel-like pattern. Then, material interpolation functions for inverse permeability and dynamic viscosity are used to ensure convergence of the solution and resolve non-linearity. In order to define wall shear stress on implicit boundary between solid and fluid (i.e., blood) occurring in fluidic topology optimization, the relaxation method of wall shear stress is first proposed in this study. We then apply the proposed fluidic topology optimization to actual fluidic systems dealing with blood (e.g., a femoral bypass graft). These design examples validate the efficiency of the proposed approach and show that topology optimization can be used for the initial conceptual design of various fluidic systems.
机译:本文提出了一种拓扑优化过程,通过在处理血液的流体系统设计中考虑剪切稀化非牛顿流体效应来最小化壁面剪切应力。拓扑优化最初是针对机械设计问题而开发的,在最近十年中,该方法已扩展到流体应用的范围。本文将Carreau-Yasuda本构方程模型用于剪切稀化非牛顿流体模型。基本思想是每个元素或网格点的材料密度是一个设计变量,因此,几何形状以像素状图案进行参数化。然后,使用反渗透率和动态粘度的材料插值函数来确保解的收敛性和解决非线性问题。为了定义在流体拓扑优化中出现的固体和流体(即血液)之间的隐式边界上的壁切应力,本研究首先提出了壁切应力的松弛方法。然后,我们将提出的流体拓扑优化应用于处理血液的实际流体系统(例如,股骨旁路移植物)。这些设计实例验证了所提出方法的效率,并表明拓扑优化可用于各种流体系统的初始概念设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号