首页> 外文期刊>Computers & mathematics with applications >High-order methods as an alternative to using sparse tensor products for stochastic Galerkin FEM
【24h】

High-order methods as an alternative to using sparse tensor products for stochastic Galerkin FEM

机译:高阶方法可替代将稀疏张量产品用于随机Galerkin FEM

获取原文
获取原文并翻译 | 示例

摘要

Solutions of random elliptic boundary value problems admit efficient approximations by polynomials on the parameter domain. Each coefficient in such an expansion is a spatially dependent function, and can be approximated within a hierarchy of finite element spaces. If the finite elements are of sufficiently high order, using just a single spatial mesh is predicted to achieve the same convergence rate with respect to the total number of degrees of freedom as sparse tensor product constructions and other multilevel stochastic Galerkin approximations. Numerical computations for an elliptic two-point boundary value problem confirm this and indicate no loss of accuracy for a single-level method compared to using a sparse tensor product with the same total number of degrees of freedom.
机译:随机椭圆边界值问题的解决方案允许在参数域上使用多项式进行有效逼近。这种扩展中的每个系数都是空间相关的函数,可以在有限元素空间的层次结构中近似。如果有限元具有足够高的阶数,则预测仅使用单个空间网格就可以实现与稀疏张量积构造和其他多级随机Galerkin近似相对于自由度总数相同的收敛速度。椭圆两点边值问题的数值计算证实了这一点,与使用总自由度相同的稀疏张量积相比,单级方法的精度也没有损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号