首页> 外文期刊>Computers & mathematics with applications >Multilevel refinable triangular PSP-splines (Tri-PSPS)
【24h】

Multilevel refinable triangular PSP-splines (Tri-PSPS)

机译:多级可精修三角形PSP花键(Tri-PSPS)

获取原文
获取原文并翻译 | 示例

摘要

A multi-level spline technique known as partial shape preserving splines (PSPS) (Li and Tian, 2011) has recently been developed for the design of piecewise polynomial freeform geometric surfaces, where the basis functions of the PSPS can be directly built from an arbitrary set of polygons that partitions a giving parametric domain. This paper addresses a special type of PSPS, the triangular PSPS (Tri-PSPS), where all spline basis functions are constructed from a set of triangles. Compared with other triangular spline techniques, Tri-PSPS have several distinctive features. Firstly, for each given triangle, the corresponding spline basis function for any required degree of smoothness can be expressed in closed-form and directly written out in full explicitly as piecewise bivariate polynomials. Secondly, Tri-PSPS are an additive triangular spline technique, where the spline function built from a given triangle can be replaced with a set of refined spline functions built on a set of smaller triangles that partition the initial given triangle. In addition, Tri-PSPS are a multilevel spline technique, Tri-PSPS surfaces can be designed to have a continuously varying levels of detail, achieved simply by specifying a proper value for the smoothing parameter introduced in the spline functions. In terms of practical implementation, Tri-PSPS are a parallel computing friendly spline scheme, which can be easily implemented on modern programmable GPUs or on high performance computer clusters, since each of the basis functions of Tri-PSPS can be directly computed independent of each other in parallel. (C) 2015 Elsevier Ltd. All rights reserved.
机译:最近开发了一种称为部分形状保持样条线(PSPS)的多级样条技术(Li和Tian,2011),用于分段多项式自由形式的几何曲面的设计,其中PSPS的基本函数可以直接从任意划分给定参数域的一组多边形。本文介绍一种特殊类型的PSPS,即三角形PSPS(Tri-PSPS),其中所有样条基函数均由一组三角形构成。与其他三角花键技术相比,Tri-PSPS具有几个独特的功能。首先,对于每个给定的三角形,可以将任何所需的平滑度的相应样条基函数表示为封闭形式,并直接将其完整明确地直接写成分段二元多项式。其次,Tri-PSPS是一种附加的三角形样条曲线技术,其中可以将由给定三角形构建的样条函数替换为基于细分初始给定三角形的一组较小三角形的一组精致的样条函数。此外,Tri-PSPS是一种多级样条曲线技术,可以将Tri-PSPS曲面设计为具有连续变化的细节级别,只需为样条函数中引入的平滑参数指定适当的值即可实现。就实际实现而言,Tri-PSPS是一种并行计算友好的样条方案,可以轻松地在现代可编程GPU或高性能计算机集群上实施,因为Tri-PSPS的每个基本功能都可以独立于每个函数直接进行计算其他并行。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号