首页> 外文期刊>Computers & mathematics with applications >Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications
【24h】

Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications

机译:广义耦合Sylvester矩阵方程的基于降秩梯度的算法及其应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, by constructing an objective function and using the gradient search, full-rank and reduced-rank gradient-based algorithms are suggested for solving generalized coupled Sylvester matrix equations, It is proved that the reduced-rank iterative algorithm is convergent for proper initial iterative values. By analyzing the spectral radius of the related matrices, the convergence properties are studied and the optimal convergence factor of the reduced-rank algorithm is determined. The relationship between the reduced-rank algorithm and the full-rank algorithm is discussed. Consequently, the computation load can be reduced greatly for solving,a class of matrix equation. A numerical example is provided to illustrate the effectiveness of the proposed algorithms and testify the conclusions suggested in this paper. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文通过构造目标函数并利用梯度搜索,提出了基于全秩和降秩的梯度算法求解广义耦合Sylvester矩阵方程,证明了降阶迭代算法是收敛的。初始迭代值。通过分析相关矩阵的谱半径,研究了收敛性,确定了降秩算法的最优收敛因子。讨论了降秩算法和满秩算法之间的关系。因此,可以大大减少求解一类矩阵方程的计算量。数值算例说明了所提算法的有效性,并验证了本文提出的结论。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号