首页> 外文期刊>Computers & mathematics with applications >A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion
【24h】

A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion

机译:非局部交叉扩散间接传播疾病模型的收敛有限体积方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with a model of the indirect transmission of an epidemic disease between two spatially distributed host populations having non-coincident spatial domains with nonlocal and cross-diffusion, the epidemic disease transmission occurring through a contaminated environment. The mobility of each class is assumed to be influenced by the gradient of the other classes. We address the questions of existence of weak solutions and existence and uniqueness of classical solution by using, respectively, a regularization method and an interpolation result between Banach spaces. Moreover, we propose a finite volume scheme and proved the well-posedness, nonnegativity and convergence of the discrete solution. The convergence proof is based on deriving a series of a priori estimates and by using a general L-p compactness criterion. Finally, the numerical scheme is illustrated by some examples. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们关注的是一个流行病在两个空间分布不一致的空间域之间具有非局部和交叉扩散的空间分布宿主种群之间的间接传播的模型,该流行病的传播是通过受污染的环境发生的。假定每个类别的迁移率受其他类别的梯度的影响。我们分别通过使用正则化方法和Banach空间之间的插值结果来解决弱解的存在以及经典解的存在和唯一性的问题。此外,我们提出了一个有限体积方案,并证明了离散解的适定性,非负性和收敛性。收敛性证明是基于推导一系列先验估计并使用通用的L-p压缩准则。最后,通过一些示例说明了数值方案。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号