首页> 外文期刊>Computers & mathematics with applications >Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation
【24h】

Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation

机译:针对一维Helmholtz方程使用非常规误差表示的面向目标的适应性

获取原文
获取原文并翻译 | 示例

摘要

In this work, the error of a given output functional is represented using bilinear forms that are different from those given by the adjoint problem. These representations can be employed to design novel h, p, and hp energy-norm and goal-oriented adaptive algorithms. Numerical results in 1D show that, for wave propagation problems, the advantages of this new representation are notorious when selecting the Laplace equation as the dual problem. Specifically, the computed upper bounds of the new error representation are sharper than the classical ones used in both energy-norm and goal-oriented adaptive methods, especially when the dispersion (pollution) error is significant. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在这项工作中,给定输出函数的误差用与伴随问题给定的双线性形式不同的双线性形式表示。这些表示可用于设计新颖的h,p和hp能量范数和面向目标的自适应算法。一维数值结果表明,对于波传播问题,当选择拉普拉斯方程作为对偶问题时,这种新表示形式的优点是众所周知的。具体而言,新误差表示的计算上限比能量范数和面向目标的自适应方法中使用的经典上限更尖锐,尤其是在色散(污染)误差很大的情况下。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号