首页> 外文期刊>Computers & mathematics with applications >Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations
【24h】

Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations

机译:二维分布阶微分方程外推法的两个交替方向隐式差分格式

获取原文
获取原文并翻译 | 示例

摘要

The Grunwald formula is used to solve the two-dimensional distributed-order differential equations. Two alternating direction implicit (ADI) difference schemes are derived. It is proved that the schemes are unconditionally stable and convergent with the convergence orders 0(tau + h(1)(2) + h(2)(2) + Delta alpha(2)) and 0(tau + h(1)(4) + h(2)(4) + Delta alpha(4)) in H-1 norm, respectively, where tau, h(1), h(2) and Delta alpha are the step sizes in time, space in x- and y-direction, and distributed order. The extrapolation method is applied to improve the approximate accuracy to the orders 0(tau(2) vertical bar In tau vertical bar(2) + h(1)(2) + h(2)(2) + Delta alpha(2)) and 0(tau(2) vertical bar In tau vertical bar(2) + h(1)(2) + h(2)(2) + Delta alpha(4)), respectively. Several numerical examples are given to confirm the theoretical results. (C) 2015 Elsevier Ltd. All rights reserved.
机译:Grunwald公式用于求解二维分布式微分方程。推导了两种交替方向隐式(ADI)差分方案。证明了该方案是无条件稳定的并且收敛阶数为0(tau + h(1)(2)+ h(2)(2)+ Delta alpha(2))和0(tau + h(1) (4)+ h(2)(4)+ Delta alpha(4))分别在H-1范数中,其中tau,h(1),h(2)和Delta alpha是时间步长, x和y方向,以及分布顺序。应用外推法可提高阶数0(tau(2)竖线的近似精度在tau竖线(2)+ h(1)(2)+ h(2)(2)+增量alpha(2) )和0(tau(2)竖线在tau竖线(2)+ h(1)(2)+ h(2)(2)+ Delta alpha(4))中。给出了几个数值例子来证实理论结果。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号