首页> 外文期刊>Computers & mathematics with applications >Hermitian plane wavelet finite element method: Wave propagation and load identification
【24h】

Hermitian plane wavelet finite element method: Wave propagation and load identification

机译:厄米平面小波有限元方法:波传播和载荷识别

获取原文
获取原文并翻译 | 示例

摘要

The two-dimensional Hermitian interpolation wavelet is constructed by using the tensor product of the modified Hermitian wavelets expanded at each coordinate. Then the two-dimensional Hermitian interpolation wavelet is substituted into finite element formulations to address the wave propagation and load identification problems. Hermitian wavelet finite element can be used to describe the wave propagation and to reveal the rule of the wave propagation in plane. The wave propagation response is used to solve the load identification inverse problem. Results show that the identified load value is similar to the applied load when the location of the response node is close to the applied load position. The proposed method can accurately identify the location, waveform and amplitude of the applied load. (C) 2016 Elsevier Ltd. All rights reserved.
机译:二维Hermitian插值小波是通过使用在每个坐标处展开的修改后的Hermitian小波的张量积构造的。然后将二维Hermitian插值小波代入有限元公式,以解决波传播和载荷识别问题。厄米小波有限元可用于描述波的传播并揭示波在平面中的传播规律。波传播响应用于解决负荷识别逆问题。结果表明,当响应节点的位置靠近施加的载荷位置时,所标识的载荷值与施加的载荷相似。所提出的方法可以准确地识别所施加负载的位置,波形和幅度。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号