首页> 外文期刊>Computers & mathematics with applications >A high-performance finite-volume algorithm for solving partial differential equations governing compressible viscous flows on structured grids
【24h】

A high-performance finite-volume algorithm for solving partial differential equations governing compressible viscous flows on structured grids

机译:一种高性能的有限体积算法,用于求解控制结构化网格上可压缩粘性流的偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

This work focuses on the development of a high-performance fourth-order finite-volume method to solve the nonlinear partial differential equations governing the compressible Navier-Stokes equations on a Cartesian grid with adaptive mesh refinement. The novelty of the present study is to introduce the loop chaining concept to this complex fourth-order fluid dynamics algorithm for significant improvement in code performance on parallel machines. Specific operations involved in the algorithm include the finite-volume formulation of fourth-order spatial discretization stencils and optimal inter-loop parallelization strategies. Numerical fluxes of the Navier-Stokes equations comprise the hyperbolic (inviscid) and elliptic (viscous) components. The hyperbolic flux is evaluated using high-resolution Godunov's method and the elliptic flux is based on fourth-order centered-difference methods everywhere in the computational domain. The use of centered-difference methods everywhere supports the idea of fusing modular codes to achieve high efficiency on modern computers. Temporal discretization is performed using the standard fourth order Runge-Kutta method. The fourth-order accuracy of solution in space and time is verified with a transient Couette flow problem. The algorithm is applied to solve the Sod's shock tube and the transient flat-plate boundary layer flow. The numerical predictions are validated by comparing to the analytical solutions. The performance of the baseline code is compared to that of the fused scheme which fuses modular codes via loop chaining concept and a significant improvement in execution time is observed. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项工作着重于开发一种高性能的四阶有限体积方法,以自适应的网格细化方法来解决控制笛卡尔网格上可压缩Navier-Stokes方程的非线性偏微分方程。本研究的新颖性是将循环链接概念引入此复杂的四阶流体动力学算法,以显着提高并行机上的代码性能。该算法涉及的特定运算包括四阶空间离散化模板的有限体积公式化和最佳回路间并行化策略。 Navier-Stokes方程的数值通量包括双曲线(无粘性)和椭圆(粘性)分量。双曲线通量使用高分辨率Godunov方法进行评估,椭圆通量基于计算域中所有位置的四阶中心差分方法。到处都使用中心差方法,支持融合模块化代码以在现代计算机上实现高效率的想法。使用标准的四阶Runge-Kutta方法执行时间离散化。通过瞬态库埃特流问题验证了空间和时间解的四阶精度。该算法用于求解Sod激波管和瞬态平板边界层流动。通过与解析解进行比较来验证数值预测。将基线代码的性能与通过循环链概念融合模块化代码的融合方案的性能进行比较,并观察到执行时间的显着改善。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号