首页> 外文期刊>Computers & mathematics with applications >Truncated Hierarchical Loop Subdivision Surfaces and application in isogeometric analysis
【24h】

Truncated Hierarchical Loop Subdivision Surfaces and application in isogeometric analysis

机译:截断的分层回路细分曲面及其在等几何分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Subdivision Surface provides an efficient way to represent free-form surfaces with arbitrary topology. Loop subdivision is a subdivision scheme for triangular meshes, which is C-2 continuous except at a finite number of extraordinary vertices with G(1) continuous. In this paper we propose the Truncated Hierarchical Loop Subdivision Surface (THLSS), which generalizes truncated hierarchical B-splines to arbitrary topological triangular meshes. THLSS basis functions are linearly independent, form a partition of unity, and are locally refinable. THLSS also preserves the geometry during adaptive h-refinement and thus inherits the surface continuity of Loop subdivision surface. Adaptive isogeometric analysis is performed with the THLSS basis functions on several complex models with extraordinary vertices to show the potential application of THLSS. (C) 2016 Elsevier Ltd. All rights reserved.
机译:细分曲面提供了一种有效的方式来表示具有任意拓扑的自由曲面。循环细分是三角形网格的细分方案,该三角形网格是C-2连续的,除了在有限数量的具有G(1)连续的非凡顶点处。在本文中,我们提出了截断的层次循环细分曲面(THLSS),它将截断的层次B样条广义化为任意拓扑三角网格。 THLSS基本函数是线性独立的,形成一个单位的分区,并且可以局部优化。 THLSS还可以在自适应h细化过程中保留几何形状,从而继承Loop细分曲面的曲面连续性。使用THLSS基本函数对具有非凡顶点的几个复杂模型执行自适应等几何分析,以显示THLSS的潜在应用。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号