首页> 外文期刊>Computers & mathematics with applications >Truncated hierarchical tricubic C-0 spline construction on unstructured hexahedral meshes for isogeometric analysis applications
【24h】

Truncated hierarchical tricubic C-0 spline construction on unstructured hexahedral meshes for isogeometric analysis applications

机译:等几何分析应用中在非结构化六面体网格上截断的层次三次C-0样条构造

获取原文
获取原文并翻译 | 示例

摘要

We present a new method for truncated hierarchical tricubic spline (TH-spline3D) construction to enable adaptive isogeometric analysis on unstructured hexahedral meshes. Taking the input unstructured hexahedral mesh as the control mesh, we first develop blending functions with the aid of tricubic Bernstein polynomials. This development is an extension of defining bicubic Bernstein polynomial blending functions over quadrilateral meshes. We further build the hierarchical structure and apply the truncation mechanism to the developed blending functions for highly localized refinement. During the refinement of TH-spline3D, high-level blending functions are added in the solution space, whereas certain low-level ones are discarded or truncated depending on the high-level subdomain. The blending functions are piecewise polynomials that form a partition of unity. Their support overlapping is also reduced due to the truncation mechanism, resulting in sparser stiffness matrices compared to the classical hierarchical refinement. TH-spline3D supports Bezier extraction such that it can be easily incorporated into existing finite element frameworks. Several examples are used to demonstrate the analysis suitability and efficiency of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新的截断三阶三次样条(TH-spline3D)构造的新方法,可以对非结构化六面体网格进行自适应等几何分析。以输入的非结构化六面体网格作为控制网格,我们首先借助三次三次Bernstein多项式开发混合函数。此发展是在四边形网格上定义双三次Bernstein多项式混合函数的扩展。我们进一步构建层次结构,并将截断机制应用于已开发的混合功能,以实现高度本地化的优化。在完善TH-spline3D的过程中,在解决方案空间中添加了高级混合功能,而某些高级混合功能则根据高级子域而被丢弃或截断。混合函数是形成单位分区的分段多项式。由于采用了截断机制,它们的支撑重叠也减少了,与传统的分层改进方法相比,导致了较稀疏的刚度矩阵。 TH-spline3D支持Bezier提取,因此可以轻松地将其合并到现有的有限元框架中。使用几个例子来证明所提出方法的分析适用性和效率。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号