首页> 外文期刊>Computers & mathematics with applications >A fast numerical method to price American options under the Bates model
【24h】

A fast numerical method to price American options under the Bates model

机译:贝茨模型下的美式期权定价快速数值方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of pricing American options in the framework of a well-known stochastic volatility model with jumps, the Bates model. According to this model, the price of an American option can be obtained as the solution of a linear complementarity problem governed by a partial integro-differential equation. In this paper, a numerical method for solving such a problem is proposed. In particular, first of all, using a Bermudan approximation and a Richardson extrapolation technique, the linear complementarity problem is reduced to a set of standard linear partial differential problems (see, for example, Ballestra and Sgarra, 2010; Chang et al. 2007, 2012). Then, these problems are solved using an ad hoc pseudospectral method which efficiently combines the Chebyshev polynomial approximation, an implicit/explicit time stepping and an operator splitting technique. Numerical experiments are presented showing that the novel algorithm is very accurate and fast and significantly outperforms other methods that have recently been proposed for pricing American options under the Bates model. (C) 2016 Elsevier Ltd. All rights reserved.
机译:我们在著名的带跳跃的随机波动率模型(贝茨模型)的框架内考虑对美式期权定价的问题。根据该模型,可以得到由部分积分微分方程控制的线性互补问题的解决方案,从而获得美式期权的价格。在本文中,提出了一种解决该问题的数值方法。特别是,首先,使用百慕达逼近和Richardson外推技术,将线性互补问题简化为一组标准线性偏微分问题(例如,参见Ballestra和Sgarra,2010; Chang等,2007, 2012)。然后,使用特设伪谱方法解决了这些问题,该方法有效地结合了切比雪夫多项式逼近,隐式/显式时间步长和算子拆分技术。数值实验表明,该新算法非常准确,快速,并且明显优于最近提出的在贝茨模型下为美式期权定价的其他方法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号