首页> 外文期刊>Computers & mathematics with applications >A fuzzy edge-weighted centroidal Voronoi tessellation model for image segmentation
【24h】

A fuzzy edge-weighted centroidal Voronoi tessellation model for image segmentation

机译:用于图像分割的模糊边缘加权质心Voronoi细分模型

获取原文
获取原文并翻译 | 示例

摘要

The centroidal Voronoi tessellation (CVT) is a special Voronoi tessellation whose generators are also the centers of mass of the corresponding Voronoi regions. The edge-weighted centroidal Voronoi tessellation (EWCVT) greatly improves the classic CVT model by adding an edge energy term in the energy functional, and has been proven to be very effective and efficient for image segmentation. In this paper, we propose afuzzy edge-weighted centroidal Voronoi tessellation (FEWCVT) model which, generalizes the EWCVT clustering with fuzzy membership information. The FEWCVT model novelly introduces an edge energy based on fuzzy clustering and naturally combines it into the EWCVT model, and thus appropriately combines the image intensity information with the length of cluster boundaries in a fuzzy form. In its simplest form, FEWCVT model reduces to the classic EWCVT model. An iterative algorithm is proposed for the FEWCVT model based on energy minimization. In the experiments, we apply the FEWCVT method to segment various types of images and also compare it with several existing fuzzy clustering methods to demonstrate its performance. (C) 2015 Elsevier Ltd. All rights reserved.
机译:质心的Voronoi镶嵌(CVT)是一种特殊的Voronoi镶嵌,其生成器也是相应Voronoi地区的质心。边缘加权质心Voronoi细分(EWCVT)通过在能量函数中添加边缘能量项极大地改进了经典CVT模型,并且已被证明对于图像分割非常有效。在本文中,我们提出了一种模糊边缘加权质心Voronoi镶嵌(FEWCVT)模型,该模型将模糊成员信息用于EWCVT聚类。 FEWCVT模型新颖地引入了基于模糊聚类的边缘能量,并将其自然地组合到EWCVT模型中,从而以模糊形式适当地将图像强度信息与聚类边界的长度进行了组合。 FEWCVT模型以最简单的形式简化为经典的EWCVT模型。提出了基于能量最小化的FEWCVT模型的迭代算法。在实验中,我们将FEWCVT方法用于分割各种类型的图像,并将其与几种现有的模糊聚类方法进行比较以证明其性能。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号