首页> 外文期刊>Computers & mathematics with applications >A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions
【24h】

A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions

机译:多维函数拟最优插值的动态自适应稀疏网格方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we develop a dynamically adaptive sparse grids (SG) method for quasi optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the "best M-terms" based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids built from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi optimal interpolant to several alternative SG schemes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们开发了一种动态自适应稀疏网格(SG)方法,用于在一维有界域的乘积上定义的多维解析函数的拟最佳插值。这种方法的目标是在多项式系数的先验估计的基础上,构造与“最佳M项”相对应的空间插值。过去,SG方法已经成功实现了这一目标,其传统构造依赖于背包问题的解决方案:仅将最有利可图的层次盈余添加到SG中。但是,该方法需要与分析区域的大小和内插算子的范数有关的额外的锐利估计,即Lebesgue常数。取而代之的是,我们提出了一种迭代SG程序,该程序可以自适应地细化该区域的估计值并说明Lebesgue常数的影响。我们的方法不需要任何先验知识的分析性或算子范数,可以很容易地推广到仿射和非仿射分析函数,并且可以应用于由一维规则构建的稀疏网格,其中节点数目任意增加。在几个数值示例中,我们利用动态自适应SG来插值与参数化椭圆形和双曲型PDE的解相关的关注量,并将准最优插值的性能与几种备选SG方案进行比较。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号