首页> 外文期刊>Computers & mathematics with applications >Competitive exclusion and coexistence of a delayed reaction-diffusion system modeling two predators competing for one prey
【24h】

Competitive exclusion and coexistence of a delayed reaction-diffusion system modeling two predators competing for one prey

机译:具竞争性的时滞反应扩散系统的竞争排斥与共存

获取原文
获取原文并翻译 | 示例

摘要

In this work, we study a time delayed reaction-diffusion system with homogeneous Neumann boundary conditions. This system describes two predators competing for the same prey. By the method of upper and lower solutions, we obtain sufficient conditions for the competitive exclusion principle to hold and sufficient conditions of the global asymptotic stability of positive constant solution. By taking time delay as the bifurcation parameter, spatially homogeneous and inhomogeneous Hopf bifurcation at the positive constant solution are proved to occur for a sequence of critical values of the delay parameter. It is shown that there are three coexistence forms for the three species: steady states, spatial homogeneous and inhomogeneous periodic oscillations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们研究了具有均匀Neumann边界条件的时滞反应扩散系统。该系统描述了两个竞争相同猎物的食肉动物。通过上下解的方法,我们获得了竞争排斥原理所要满足的充分条件以及正常数解的全局渐近稳定性的充分条件。通过将时间延迟作为分叉参数,证明了对于延迟参数的一系列临界值,在正常数解中发生了空间均匀和不均匀的Hopf分叉。结果表明,三种物质共存在三种共存形式:稳态,空间均匀和不均匀的周期性振动。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号