首页> 外文期刊>Computers & mathematics with applications >A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate
【24h】

A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate

机译:具有一般非线性发生率的延迟扩散病毒感染模型的非标准有限差分方案

获取原文
获取原文并翻译 | 示例

摘要

A non-standard finite difference scheme is proposed to solve a delayed and diffusive viral infection model with general nonlinear incidence rate. The results show that the discrete model preserves the positivity and boundedness of solutions in order to ensure the well-posedness of the problem. Moreover, this method preserves all equilibria of the original continuous model. By constructing Lyapunov functionals, we show that the global stability of equilibria is completely determined by the basic reproduction number No, which implies that the proposed discrete model can efficiently blue preserve the global stability of equilibria of the corresponding continuous model. Numerical experiments are carried out to support the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:提出了一种非标准的有限差分方案来求解具有一般非线性发生率的时滞和扩散性病毒感染模型。结果表明,离散模型保留了解的正性和有界性,以确保问题的适定性。而且,该方法保留了原始连续模型的所有平衡。通过构造Lyapunov泛函,我们表明均衡的全局稳定性完全由基本的复制数No决定,这意味着所提出的离散模型可以有效地保持相应连续模型的均衡的全局稳定性。进行数值实验以支持理论结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号