首页> 外文期刊>Computers & mathematics with applications >A RBF partition of unity collocation method based on finite difference for initial-boundary value problems
【24h】

A RBF partition of unity collocation method based on finite difference for initial-boundary value problems

机译:初边值问题的基于有限差分的统一配置RBF分区

获取原文
获取原文并翻译 | 示例

摘要

Meshfree radial basis function (RBF) methods are popular tools used to numerically solve partial differential equations (PDEs). They take advantage of being flexible with respect to geometry, easy to implement in higher dimensions, and can also provide high order convergence. Since one of the main disadvantages of global RBF-based methods is generally the computational cost associated with the solution of large linear systems, in this paper we focus on a localizing RBF partition of unity method (RBF-PUM) based on a finite difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation method, which can successfully be applied to solve time-dependent PDEs. This approach allows to significantly decrease ill-conditioning of traditional RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix system, reducing the computational effort but maintaining at the same time a high level of accuracy. Numerical experiments show performances of our collocation scheme on two benchmark problems, involving unsteady convection-diffusion and pseudo-parabolic equations. (C) 2018 Elsevier Ltd. All rights reserved.
机译:无网格径向基函数(RBF)方法是用于数值求解偏微分方程(PDE)的流行工具。它们利用了相对于几何形状的灵活性,易于在更高尺寸上实现的优势,并且还可以提供高阶收敛性。由于基于RBF的全局方法的主要缺点之一通常是与大型线性系统求解相关的计算成本,因此在本文中,我们着重于基于有限差分的局部RBF统一方法(RBF-PUM)分区( FD)方案。具体来说,我们提出了一种新的RBF-PUM-FD配置方法,该方法可以成功地用于解决与时间有关的PDE。这种方法可以显着减少传统基于RBF的方法带来的不适。此外,RBF-PUM-FD方案导致了稀疏矩阵系统,减少了计算量,但同时保持了较高的准确性。数值实验表明,我们的配置方案在涉及非对流扩散和拟抛物线方程的两个基准问题上的性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号