首页> 外文期刊>Computers & mathematics with applications >Three time integration methods for incompressible flows with discontinuous Galerkin Boltzmann method
【24h】

Three time integration methods for incompressible flows with discontinuous Galerkin Boltzmann method

机译:不连续流的三种时间积分方法,用不连续Galerkin Boltzmann方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents three time integration methods for incompressible flows with finite element method in solving the lattice-BGK Boltzmann equation. The space discretization is performed using nodal discontinuous Galerkin method, which employs unstructured meshes with triangular elements and high order approximation degrees. The time discretization is performed using three different kinds of time integration methods, namely, direct, decoupling and splitting. From the storage cost, temporal accuracy, numerical stability and time consumption, we systematically compare three time integration methods. Then benchmark fluid flow simulations are performed to highlight efficient time integration methods. Numerical results are in good agreement with others or exact solutions. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了用有限元法求解不可压缩流的三种时间积分方法,求解了格子BGK Boltzmann方程。使用节点间断Galerkin方法执行空间离散化,该方法采用具有三角形元素和高阶逼近度的非结构化网格。时间离散使用三种不同的时间积分方法执行,即直接,去耦和分割。从存储成本,时间精度,数值稳定性和时间消耗方面,我们系统地比较了三种时间积分方法。然后进行基准流体流动仿真以突出有效的时间积分方法。数值结果与其他结果或精确的解决方案非常吻合。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号