首页> 外文期刊>Computers & mathematics with applications >Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data
【24h】

Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data

机译:具有非光滑初始数据的空间分数反应扩散方程的线性隐式预测校正方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, linearly implicit predictor-corrector methods are proposed for solving space fractional reaction-diffusion equations with non-smooth initial data. The methods are based on Matrix Transfer Technique for spatial discretization and are shown to be unconditionally stable. It is observed that the linearly implicit predictor-corrector method derived by using (1,1)-Pade approximation to matrix exponential function incurs oscillatory behavior for some time steps. These oscillations are due to high frequency components present in the solution and are diminished as the order of the space-fractional derivative decreases (slow diffusion). We present a priori reliability constraint to avoid these unwanted oscillations and generalize the constraints for all (m, m)-Pade approximants, m is an element of Z(+), to the matrix exponential functions. These time stepping constraints are seen to be dependent on the order of the space-fractional derivative. The linearly implicit predictor-corrector method based on the (0,2)-Pade approximations to the matrix exponential function is shown to be oscillation-free for any time step. Error estimates are obtained for the methods and are theoretically shown to be second-order convergent. Computational complexity of the algorithms is discussed for solving multidimensional space-fractional reaction diffusion systems. Several numerical experiments are performed to support our theoretical observations and to show the effectiveness, reliability, and efficiency of the methods. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文提出了线性隐式预测器-校正器方法,用于求解初始数据不光滑的空间分数反应扩散方程。这些方法基于用于空间离散化的矩阵转移技术,并且被证明是无条件稳定的。可以观察到,通过对矩阵指数函数使用(1,1)-Pade逼近得出的线性隐式预测器-校正器方法会在某些时间步长上引起振荡行为。这些振荡是由于溶液中存在的高频分量引起的,并且随着空间分数导数的阶数减小(扩散缓慢)而减小。我们提出了一个先验的可靠性约束来避免这些不必要的振荡,并将所有(m,m)-Pade近似值的约束推广到矩阵指数函数,其中m是Z(+)的元素。这些时间步长约束被视为取决于空间分数导数的顺序。基于矩阵指数函数的(0,2)-Pade近似值的线性隐式预测器-校正器方法在任何时间步均无振荡。对该方法获得了误差估计,并且理论上显示为二阶收敛。讨论了求解多维空间分数反应扩散系统的算法的计算复杂性。进行了几个数值实验,以支持我们的理论观察并显示方法的有效性,可靠性和效率。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号