首页> 外文期刊>Computers & mathematics with applications >Incremental proper orthogonal decomposition for PDE simulation data
【24h】

Incremental proper orthogonal decomposition for PDE simulation data

机译:PDE模拟数据的增量适当正交分解

获取原文
获取原文并翻译 | 示例

摘要

We propose an incremental algorithm to compute the proper orthogonal decomposition (POD) of simulation data for a partial differential equation. Specifically, we modify an incremental matrix SVD algorithm of Brand to accommodate data arising from Galerkin-type simulation methods for time dependent PDEs. The algorithm is applicable to data generated by many numerical methods for PDEs, including finite element and discontinuous Galerkin methods. The algorithm initializes and efficiently updates the dominant POD eigenvalues and modes during the time stepping in a PDE solver without storing the simulation data. We prove that the algorithm without truncation updates the POD exactly. We demonstrate the effectiveness of the algorithm using finite element computations for a 1D Burgers' equation and a 2D Navier-Stokes problem. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们提出一种增量算法来计算偏微分方程仿真数据的正确正交分解(POD)。具体来说,我们修改了Brand的增量矩阵SVD算法,以适应因时间相关的PDE的Galerkin型仿真方法产生的数据。该算法适用于通过多种PDE数值方法生成的数据,包括有限元法和间断Galerkin方法。该算法在PDE求解器中的时间步长内初始化并有效地更新了主要POD特征值和模式,而无需存储模拟数据。我们证明了无截断的算法可以准确地更新POD。我们使用一维Burgers方程和二维Navier-Stokes问题,通过有限元计算证明了该算法的有效性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号