首页> 外文期刊>Computers & mathematics with applications >Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields
【24h】

Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields

机译:具有静态引力场的Euler方程的平衡良好的有限差分加权基本非振荡方案

获取原文
获取原文并翻译 | 示例

摘要

Euler equations of compressible gas dynamics, coupled with a source term due to the gravitational fields, often appear in many interesting astrophysical and atmospheric applications. In this paper, we design high order finite difference weighted essentially non oscillatory (WENO) methods for the Euler equations under static gravitation fields, which are well-balanced for known steady state solutions. We simplify the well-balanced WENO methods designed in Xing and Shu (2013) for the isothermal equilibrium, and then extend them to more general steady state solutions which include both isothermal and polytropic equilibria. One- and two-dimensional numerical examples are provided at the end to test the performance of the proposed WENO methods and verify these properties numerically. (C) 2017 Elsevier Ltd. All rights reserved.
机译:可压缩气体动力学的欧拉方程,加上引力场引起的源项,经常出现在许多有趣的天体和大气应用中。在本文中,我们为静态引力场下的Euler方程设计了高阶有限差分加权基本非振荡(WENO)方法,这些方法对于已知的稳态解是平衡的。我们简化了Xing和Shu(2013)中为等温平衡设计的均衡WENO方法,然后将其扩展到更广泛的稳态解决方案,包括等温和多向平衡。最后提供了一维和二维数值示例,以测试所提出的WENO方法的性能并通过数值验证这些性质。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号