首页> 外文期刊>Computers & mathematics with applications >A two-grid discretization scheme of non-conforming finite elements for transmission eigenvalues
【24h】

A two-grid discretization scheme of non-conforming finite elements for transmission eigenvalues

机译:传输特征值非协调有限元的两网格离散化方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, for the Helmholtz transmission eigenvalue problem, we propose a two-grid discretization scheme of non-conforming finite elements. With this scheme, the solution of the transmission eigenvalue problem on a fine grid pi(h) is reduced to the solution of the primal and dual eigenvalue problem on a much coarser grid pi(H) and the solutions of two linear algebraic systems with the same positive definite Hermitian and block diagonal coefficient matrix on the fine grid pi(h). We prove the resulting solution still maintains an asymptotically optimal accuracy, and we report some numerical examples in two dimension and three dimension on the modified-Zienkiewicz element to validate the efficiency of our approach for solving transmission eigenvalues. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文针对亥姆霍兹传递特征值问题,提出了一种非网格有限元的两网格离散化方案。通过这种方案,将细网格pi(h)上的传输特征值问题的解简化为粗得多的网格pi(H)上的原始和对偶特征值问题的解,以及两个线性代数系统的解。精细网格pi(h)上的相同正定Hermitian和块对角线系数矩阵。我们证明了所得解决方案仍然保持了渐近最优精度,并且我们在改进的Zienkiewicz元素上报告了二维和三维上的一些数值示例,以验证我们求解传递特征值的方法的效率。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号