首页> 外文期刊>Computers & mathematics with applications >Unconditional convergence and optimal L_2 error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier-Stokes equations
【24h】

Unconditional convergence and optimal L_2 error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier-Stokes equations

机译:非平稳Navier-Stokes方程的Crank-Nicolson外推有限元的无条件收敛和最优L_2误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study stability and convergence of fully discrete finite element method on large timestep which used Crank-Nicolson extrapolation scheme for the nonstationary Navier-Stokes equations. This approach bases on a finite element approximation for the space discretization and the Crank-Nicolson extrapolation scheme for the time discretization. It reduces nonlinear equations to linear equations, thus can greatly increase the computational efficiency. We prove that this method is unconditionally stable and unconditionally convergent. Moreover, taking the negative norm technique, we derive the L-2, H-1-unconditionally optimal error estimates for the velocity, and the L-2-unconditionally optimal error estimate for the pressure. Also, numerical simulations on unconditional L-2-stability and convergent rates of this method are shown. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了大离散步长的全离散有限元方法的稳定性和收敛性,该方法将Crank-Nicolson外推方案用于非平稳的Navier-Stokes方程。该方法基于空间离散化的有限元逼近和时间离散化的Crank-Nicolson外推方案。将非线性方程简化为线性方程,可以大大提高计算效率。我们证明了该方法是无条件稳定和无条件收敛的。此外,采用负范数技术,我们得出速度的L-2,H-1无条件最优误差估计和压力的L-2-无条件最优误差估计。此外,还显示了该方法无条件L-2-稳定性和收敛速度的数值模拟。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号