首页> 外文期刊>Computers & mathematics with applications >Arbitrary order DG-DGLM method for hyperbolic systems of multi-dimensional conservation laws
【24h】

Arbitrary order DG-DGLM method for hyperbolic systems of multi-dimensional conservation laws

机译:多维保护法双曲线系统的任意顺序DG-DGLM方法

获取原文
获取原文并翻译 | 示例

摘要

An arbitrary order discontinuous Galerkin method in space and time is proposed to approximate the solution to hyperbolic systems of mull-dimensional conservation laws. Weak formulation is derived through the definition of weak divergence. Weak solution is given as a pair of weak functions on the element and the edge, respectively. Weak solution on the edge is characterized as the average of the solutions on the elements sharing the edge. Stability of the approximate solution is proved in a broken L-2(L-2) norm and also in a broken l(infinity)(L-2) norm. Error estimates of O(h(r) + k(n)(q)) with P-r(E) and P-q(J(n)) elements (r, q 1 + d/2) are then derived in a broken L-2(L-2) norm, where h and k(n) are the maximum diameters of the elements and the time step of J(n), respectively, J(n) is the time interval, and d is the dimension of the spatial domain.
机译:提出了一种空间和时间的任意订单不连续的Galerkin方法,以近似于仔细守恒法的双曲线系统解决方案。 通过弱分歧的定义来源的弱配方。 薄弱的解决方案分别作为元素和边缘上的一对弱功能。 边缘的弱解的特征在于共享边缘的元素上的解决方案的平均值。 近似溶液的稳定性被证明在破碎的L-2(L-2)规范中,并且还在破碎的L(Infinity)(L-2)规范中。 与PR(e)和PQ(j(n))元素(r,q& 1 + d / 2)的o(h(r)+ k(n))的误差估计然后被突破 L-2(L-2)规范,其中H和K(n)是元素的最大直径和j(n)的时间步长,j(n)是时间间隔,d是维度 空间域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号