首页> 外文期刊>Computers & mathematics with applications >A least-squares formulation of the Moving Discontinuous Galerkin Finite Element Method with Interface Condition Enforcement
【24h】

A least-squares formulation of the Moving Discontinuous Galerkin Finite Element Method with Interface Condition Enforcement

机译:具有接口状态执行的移动不连续Galerkin有限元方法的最小二乘配方

获取原文
获取原文并翻译 | 示例

摘要

A least-squares formulation of the Moving Discontinuous Galerkin Finite Element Method with Interface Condition Enforcement (LS-MDG-ICE) is presented. This method combines MDG-ICE, which uses a weak formulation that separately enforces a conservation law and the corresponding interface condition and treats the discrete geometry as a variable, with the Discontinuous Petrov-Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan to systematically generate optimal test functions from the trial spaces of both the discrete flow field and discrete geometry. For inviscid flows, LS-MDG-ICE detects and fits a priori unknown interfaces, including shocks. For convection-dominated diffusion, LS-MDG-ICE resolves internal layers, e.g., viscous shocks, and boundary layers using anisotropic curvilinear r-adaptivity in which high-order shape representations are anisotropically adapted to accurately resolve the flow field. As such, LS-MDG-ICE solutions are oscillation-free, regardless of the grid resolution and polynomial degree. Finally, for both linear and nonlinear problems in one dimension, LS-MDG-ICE is shown to achieve optimal-order convergence of the L-2 solution error with respect to the exact solution when the discrete geometry is fixed and super-optimal convergence when the discrete geometry is treated as a variable. Published by Elsevier Ltd.
机译:提出了具有接口状态强制(LS-MDG-ICE)的移动不连续Galerkin有限元方法的最小二乘配方。该方法结合了MDG-ICE,它使用弱配方,分别实施保护法和相应的接口状况,并将离散的几何形状视为变量,具有Demkowicz和Gopalakrishnan的不连续的Petrov-Galerkin(DPG)方法系统地产生最佳的最佳方法从离散流场和离散几何的试验空间测试函数。对于INCISCID流程,LS-MDG-ICE检测并适合先验未知的接口,包括冲击。对于对流主导的扩散,使用各向异性曲线R适应性,LS-MDG-ICE解析内层,例如粘性冲击和边界层,其中高阶形状表示是各向异性的,以精确地解析流场。因此,无论网格分辨率和多项式程度如何,LS-MDG-ICE溶液都是无振荡的。最后,对于一个维度中的线性和非线性问题,显示LS-MDG-ICE,以实现当离散几何形状是固定的和超最佳收敛时的精确解决方案的L-2解决方案误差的最佳顺序收敛。离散几何形状被视为变量。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号