首页> 外文期刊>Computers & mathematics with applications >Error estimation for the polygonal finite element method for smooth and singular linear elasticity
【24h】

Error estimation for the polygonal finite element method for smooth and singular linear elasticity

机译:多边形有限元法的误差估计平滑和奇异线性弹性的方法

获取原文
获取原文并翻译 | 示例

摘要

A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in meshing and improve solution accuracy. As any numerical approximation, they have an induced error which has to be accounted for in order to validate the approximate solution. Here, we propose a recovery type error measure based on a moving least squares fitting of the finite element stress field. The quality of the recovered field is improved by imposing equilibrium conditions and, for singular problems, splitting the stress field into smooth and singular parts. We assess the performance of the error indicator using three problems with exact solution, and we also compared the results with those obtained with standard finite element meshes based on simplexes. The results indicate good values for the local and global effectivities, similar to the values obtained for standard approximations, and are always within the recommended range.
机译:本文提出了一种开发用于评估多边形有限元近似值的恢复基于误差指示器。在过去几年中越来越多地研究了任意多边形网格的有限元方法的概括,因为它们提供了啮合和提高溶液精度的灵活性。作为任何数值近似,它们具有必须考虑的诱导误差,以便验证近似解决方案。这里,我们提出了一种基于有限元应力场的移动最小二乘拟合的恢复型错误测量。通过施加平衡条件和奇异问题,将回收的场的质量提高,将应力场分成光滑,奇异部分。我们使用三个完全解决方案的问题评估错误指示符的性能,我们还将结果与基于单纯x的标准有限元网格获得的结果进行了比较。结果表明了本地和全球有效性的良好值,类似于标准近似值的值,并且始终在推荐范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号