首页> 外文期刊>Computers & mathematics with applications >The rapid assessment for three-dimensional potential model of large-scale particle system by a modified multilevel fast multipole algorithm
【24h】

The rapid assessment for three-dimensional potential model of large-scale particle system by a modified multilevel fast multipole algorithm

机译:改进的多级快速多极算法对大规模粒子系统三维势模型的快速评估

获取原文
获取原文并翻译 | 示例

摘要

In this study, a modified multilevel fast multipole algorithm is constructed for investigating large-scale particle systems. The algorithm expands the number of levels of the modified dual-level fast multipole algorithm from dual-level grids to multipole levels by a layer-by-layer correction and recursive calculation. The linear equations on coarse grid are recursively solved by a two-level grid. The single sparse matrix having higher filling rate is decomposed into a set of sparse matrices with much lower filling rate. Subsequent theoretical analysis and examples demonstrate that the total storage space of sparse matrices is significantly reduced, yet efficiency of the algorithm is almost unaffected. The fast multipole method is applied to expedite the matrix-vector multiplications. Complexity analysis demonstrates the algorithm has O(N) operation efficiency and storage complexity for three-dimensional potential model. A potential example with 10 million degrees of freedom is accurately computed via a single laptop with 16GB RAM. Finally, the development process of the modified multilevel fast multipole algorithm is briefly overviewed.
机译:在该研究中,构建了一种改进的多级快速多极算法,用于研究大规模粒子系统。该算法通过层逐层校正和递归计算将修改的双层快速多极算法的级别从双层网格到多极限级别扩展到多极电平。粗略网格上的线性方程被两级网格递归地解决。具有更高填充速率的单个稀疏矩阵被分解成一组稀疏矩阵,填充率具有更低。随后的理论分析和实施例表明稀疏矩阵的总存储空间显着降低,但算法的效率几乎不受影响。应用快速多极方法以加快矩阵矢量乘法。复杂性分析演示了算法对三维潜在模型具有O(n)运行效率和存储复杂性。具有1000万自由度的潜在示例通过具有16GB RAM的单个笔记本电脑精确计算。最后,简要介绍了修改的多级快速多极算法的开发过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号