首页> 外文期刊>Computers & mathematics with applications >Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations
【24h】

Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations

机译:具有ADI方案的有限体积近似和用于高尺寸空间分布式分数扩散方程的低秩求解器

获取原文
获取原文并翻译 | 示例

摘要

High dimensional conservative spatial distributed-order fractional diffusion equation is discretized by midpoint quadrature rule, Crank-Nicolson method, and a finite volume approximation, with alternating direction implicit scheme. The resulting scheme is shown to be consistent and unconditionally stable, hence convergent with order 3 - alpha, where alpha is the maximum of the involving fractional orders. Moreover, if the initial condition and source term possess Tensor-Train format (TT-format) with low TT-ranks, the scheme can be solved in TT-format, such that higher dimensional cases can be considered. Perturbation analysis ensures that the accumulated errors due to data recompression do not affect the overall convergence order. Numerical examples with low TT-ranks initial conditions and source terms, and with dimensions up to 20 are tested.
机译:通过中点正交规则,曲柄 - 尼科尔森方法和有限体积逼近,具有中点正交规则和有限体积近似的高维保守空间分布级分数扩散方程。 结果方案被证明是一致的且无条件稳定的,因此与顺序3 - α的会聚,其中alpha是涉及的分数令的最大值。 此外,如果初始条件和源术语具有带有低TT级的扭转系格式(TT格式),则可以以TT格式解决方案,使得可以考虑更高的尺寸情况。 扰动分析可确保由于数据再压缩引起的累积误差不会影响整体会聚顺序。 具有低TT-rounds初始条件和源术语的数值示例,并且测试尺寸高达20。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号