首页> 外文期刊>Computers & mathematics with applications >Stability and convergence of finite difference method for two-sided space-fractional diffusion equations
【24h】

Stability and convergence of finite difference method for two-sided space-fractional diffusion equations

机译:双面空间分数扩散方程有限差分法的稳定性与融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study and analyse Crank-Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided space-fractional diffusion equations (TSFDEs) with variable diffusion coefficients. The stability and convergence of the resulting discretization linear systems for TSFDEs with variable diffusion coefficients are proven by a new technique. That is, under mild assumption, the scheme is unconditionally stable and convergent with O(tau(2)+h(l)) (l = 1), where tau and h denote the temporal and spatial mesh steps, respectively. Further, we show that several numerical schemes with lth order accuracy from the literature satisfy the required assumption. Numerical examples are implemented to illustrate our theoretical analyses.
机译:在本文中,我们用具有可变扩散系数的单向和二维双面空间 - 分流扩散方程(TSFDES)的某些空间差方案研究和分析曲柄 - 尼古尔森(CN)时间离散化。 通过新技术证明具有可变扩散系数的TSFDES的所得离散化线性系统的稳定性和收敛。 也就是说,在温和的假设下,该方案无条件地稳定和与O(tau(2)+ h(l))(l> = 1)收敛,其中Tau和h分别表示时间和空间网格步骤。 此外,我们表明,来自文献的几个具有Lth订单精度的数值方案满足所需的假设。 实施数值例子以说明我们的理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号