首页> 外文期刊>Computers & mathematics with applications >A super-smooth C~1 spline space over planar mixed triangle and quadrilateral meshes
【24h】

A super-smooth C~1 spline space over planar mixed triangle and quadrilateral meshes

机译:平面混合三角形和四边形网格的超平滑C〜1花键空间

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a C1 spline space over mixed meshes composed of triangles and quadrilaterals, suitable for FEM-based or isogeometric analysis. In this context, a mesh is considered to be a partition of a planar polygonal domain into triangles and/or quadrilaterals. The proposed space combines the Argyris triangle, cf. Argyris et al. (1968), with the C1 quadrilateral element introduced in Brenner and Sung (2005), Kapl et al. (2020) for polynomial degrees p = 5. The space is assumed to be C-2 at all vertices and C-1 across edges, and the splines are uniquely determined by C-2-data at the vertices, values and normal derivatives at chosen points on the edges, and values at some additional points in the interior of the elements.The motivation for combining the Argyris triangle element with a recent C-1 quadrilateral construction, inspired by isogeometric analysis, is two-fold: on one hand, the ability to connect triangle and quadrilateral finite elements in a C-1 fashion is non-trivial and of theoretical interest. We provide not only approximation error bounds but also numerical tests verifying the results. On the other hand, the construction facilitates the meshing process by allowing more flexibility while remaining C-1 everywhere. This is for instance relevant when trimming of tensor-product B-splines is performed.In the presented construction we assume to have (bi)linear element mappings and piecewise polynomial function spaces of arbitrary degree p = 5. The basis is simple to implement and the obtained results are optimal with respect to the mesh size for L-infinity, L-2 as well as Sobolev norms H-1 and H-2. (C) 2020 The Author(s). Published by Elsevier Ltd.
机译:在本文中,我们将C1样条空间引入了由三角形和四边形组成的混合网格上的C1样条空间,适用于FEM基或异构物分析。在这种情况下,网格被认为是平面多边形域的分区到三角形和/或四边形。拟议的空间结合了Argyris三角形,CF. Argyris等人。 (1968),用Brenner和Sung(2005)中引入的C1四边形元素,Kapl等人。 (2020)对于多项式度P> = 5.假设空间在所有顶点处的C-2和边缘的C-1,并且样条在顶点,值和正常衍生物处由C-2数据唯一确定在边缘上的选择点,并且在元件内部的一些额外点处的值。将argyris三角形元件与最近的C-1四边形结构组合的动机,这是由异诊测分析的启发,是两折:一方面,以C-1时尚连接三角形和四边形有限元的能力是非琐碎的和理论兴趣。我们不仅提供近似误差界限,还提供验证结果的数值测试。另一方面,结构通过允许更多的灵活性来促进啮合过程,同时剩下剩余的C-1。这例如在执行张量 - 产品B样品的修剪时相关。在呈现的结构上,我们假设具有(Bi)线性元素映射和分段多项式函数空间的任意度P> 5.基础易于实现并且,相对于L-Infinity,L-2的网状尺寸,L-2以及SoboLev Nums H-1和H-2的结果是最佳的。 (c)2020提交人。 elsevier有限公司出版

著录项

  • 来源
    《Computers & mathematics with applications》 |2020年第12期|2623-2643|共21页
  • 作者单位

    Univ Ljubljana FMF Jadranska 19 Ljubljana 1000 Slovenia|Abelium DOO Kajuhova 90 Ljubljana 1000 Slovenia|IMFM Jadranska 19 Ljubljana 1000 Slovenia;

    Carinthia Univ Appl Sci Dept Engn & IT Europastr 4 A-9524 Villach Austria|Austrian Acad Sci RICAM Altenberger Str 69 A-4040 Linz Austria;

    Univ Ljubljana FMF Jadranska 19 Ljubljana 1000 Slovenia|IMFM Jadranska 19 Ljubljana 1000 Slovenia;

    Johannes Kepler Univ Linz Inst Appl Geometry Altenberger Str 69 A-4040 Linz Austria;

    Univ Primorska UP FAMNIT Glagoljaska 8 Koper 6000 Slovenia|Univ Primorska UP IAM Glagoljaska 8 Koper 6000 Slovenia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    C-1 discretization; Argyris triangle; C-1 quadrilateral element; Mixed triangle and quadrilateral mesh;

    机译:C-1离散化;argyris三角形;C-1四边形元素;混合三角形和四边形网格;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号