首页> 外文期刊>Computers & mathematics with applications >A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes
【24h】

A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes

机译:一种无锁的弱Galerkin在多边形网格上的Reissner-Mindlin板上的有限元方法

获取原文
获取原文并翻译 | 示例

摘要

A new weak Galerkin finite element method is introduced and analyzed for the Reissner-Mindlin plate model in the primary form (without introducing shear strain as an extra unknown), which results in a linear system with symmetric positive definite stiffness matrix. The proposed method achieves uniform convergence with respect to plate thickness (the so-called locking-free) without introducing any projection, reduced integration, etc. In addition, the new method can be applied to general polygonal meshes; in particular, we implement pentagonal and hexagonal meshes in our numerical tests. The numerical study confirms our theory. (C) 2020 Elsevier Ltd. All rights reserved.
机译:介绍了一种新的弱Galerkin有限元方法,并分析了主要形式的Reissner-Mindlin板模型(不引入剪切应变作为额外未知),这导致具有对称正定刚度矩阵的线性系统。所提出的方法实现了相对于板厚度(即所谓的锁定)均匀的收敛,而不引入任何投影,减少的集成等。另外,可以将新方法应用于一般多边形网格;特别是,我们在数值测试中实施五角形和六边形网格。数值研究证实了我们的理论。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号