首页> 外文期刊>Computers & mathematics with applications >A new discontinuous Galerkin mixed finite element method for compressible miscible displacement problem
【24h】

A new discontinuous Galerkin mixed finite element method for compressible miscible displacement problem

机译:一种新的不连续的Galerkin混合有限元方法,可压缩混溶性排量问题

获取原文
获取原文并翻译 | 示例

摘要

A new combined discontinuous Galerkin method is proposed for compressible miscible displacement problem in porous media. Here, a splitting positive definite mixed finite element method is used for the pressure and Darcy velocity, while an interior penalty discontinuous Galerkin (IPDG) method is used for the transport equation. The stability and convergence of this algorithm are considered, and the optimal a priori error estimate in l(infinity)(L-2) for velocity, pressure and concentration are given. Finally we provide some numerical results to confirm our theoretical analysis, and simulate compressible fluid flows through homogeneous and isotropic porous media. (C) 2020 Elsevier Ltd. All rights reserved.
机译:提出了一种新的结合不连续的Galerkin方法,用于多孔介质中的可压缩混溶性位移问题。这里,分裂正​​定混合有限元方法用于压力和达到速度,而内部惩罚不连续的Galerkin(IPDG)方法用于传输方程。考虑了该算法的稳定性和收敛性,给出了L(Infinity)(L-2)的最佳优化误差,用于速度,压力和浓度。最后,我们提供了一些数值结果来确认我们的理论分析,并模拟可压缩流体流过均匀和各向同性多孔介质。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号