首页> 外文期刊>Computers & mathematics with applications >A non-overlapping optimized Schwarz method for the heat equation with non linear boundary conditions and with applications to de-icing
【24h】

A non-overlapping optimized Schwarz method for the heat equation with non linear boundary conditions and with applications to de-icing

机译:具有非线性边界条件的热方程的非重叠优化施瓦茨方法,以及应用到去冰的应用

获取原文
获取原文并翻译 | 示例

摘要

When simulating complex physical phenomena such as aircraft icing or de-icing, several dedicated solvers often need to be strongly coupled. In this work, a non-overlapping Schwarz method is constructed with the unsteady simulation of de-icing as the targeted application. To do so, optimized coupling coefficients are first derived for the one dimensional unsteady heat equation with linear boundary conditions and for the steady heat equation with non-linear boundary conditions. The choice of these coefficients is shown to guarantee the convergence of the method. Using a linearization of the boundary conditions, the method is then extended to the case of a general unsteady heat conduction problem. The method is tested on simple cases and the convergence properties are assessed theoretically and numerically. Finally the method is applied to the simulation of an aircraft electrothermal de-icing problem in two dimensions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:当模拟飞机结冰或去结的复杂物理现象时,通常需要强烈耦合几个专用求解器。在这项工作中,使用不稳定的施瓦茨方法作为目标应用程序的不稳定模拟构建。为此,首先为具有线性边界条件和具有非线性边界条件的稳态不稳定的热方程来实现优化的耦合系数。显示这些系数的选择以保证该方法的收敛性。使用边界条件的线性化,然后将该方法扩展到一般不稳定的导热问题的情况。该方法在简单的情况下测试,并且在理论上和数值上评估收敛性。最后,该方法应用于两个维度的飞机电热去晶体问题的模拟。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号