首页> 外文期刊>Computers & mathematics with applications >Numerical solution of 2D singularly perturbed reaction-diffusion system with multiple scales
【24h】

Numerical solution of 2D singularly perturbed reaction-diffusion system with multiple scales

机译:多尺度的2D奇异扰动反应扩散系统的数值解

获取原文
获取原文并翻译 | 示例

摘要

In this article, a robust numerical method is studied to approximate singularly perturbed system of reaction-diffusion problems with multiple scales. The analytical properties of the exact solution have been studied. The numerical method consists of the classical central difference scheme on a Shishkin mesh for spatial semidiscretization processes and the implicit-Euler scheme on a uniform time stepping for temporal derivative. The error estimate is deduced, which exhibits that the numerical approximation is uniformly convergent of almost second-order in spatial variable and first-order in temporal variable. Numerical experiments are given which reveals the effectiveness of the proposed scheme. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在本文中,研究了一种稳健的数值方法,以近似具有多个尺度的奇异扰动的反应扩散问题系统。已经研究了确切解决方案的分析性质。数值方法包括在Shishkin网上进行空间半同类化过程的经典中心差方案和用于时间衍生的均匀时间逐步踩踏的隐式euler方案。推导出误差估计,其展示数值近似是在时间变量中的空间变量和一阶的几乎二阶收敛。给出了数值实验,其揭示了所提出的方案的有效性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号