首页> 外文期刊>Computers & mathematics with applications >Novel approach to spectral methods for irregular domains
【24h】

Novel approach to spectral methods for irregular domains

机译:不规则结构域的光谱方法的新方法

获取原文
获取原文并翻译 | 示例

摘要

Herein, the solution of partial differential equations (PDEs) using spectral methods is developed for irregular domains, which preserves their accuracy. Previously, to solve these problems, the finite differences method or the embedded domains method was typically applied. The approach presented in this article can be used for any boundary described by a Jordan curve, and the solution behavior outside the domain need not to considered. The computational process has low cost and generality because the map constructions and changing variables are unnecessary. In addition, by using the presented parametrization process, boundary conditions (boundary bordering) can be implemented conveniently, where the rectangular domains can be considered as an asymptotical case. The structure is numerically oriented, which facilitates the application of any algorithm related to spectral methods. (C) 2020 Elsevier Ltd. All rights reserved.
机译:这里,使用光谱方法的部分微分方程(PDE)的解决方案用于不规则结构域,这保留了它们的准确性。以前,为了解决这些问题,通常应用有限差异方法或嵌入式域方法。本文中呈现的方法可用于约旦曲线描述的任何边界,并且域之外的解决方案行为不需要考虑。计算过程具有低成本和一般性,因为映射结构和变量不需要变量。另外,通过使用所呈现的参数化过程,可以方便地实现边界条件(边界边界),其中矩形域可以被认为是渐近壳体。该结构在数值上取向,这有利于应用与光谱方法相关的任何算法。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号