首页> 外文期刊>Computers & mathematics with applications >Error estimates in weighted Sobolev norms for finite element immersed interface methods
【24h】

Error estimates in weighted Sobolev norms for finite element immersed interface methods

机译:有限元浸没接口方法的加权SoboLEV规范中的错误估计

获取原文
获取原文并翻译 | 示例

摘要

When solving elliptic partial differential equations in a region containing immersed interfaces (possibly evolving in time), it is often desirable to approximate the problem using an independent background discretisation, not aligned with the interface itself. Optimal convergence rates are possible if the discretisation scheme is enriched by allowing the discrete solution to have jumps aligned with the surface, at the cost of a higher complexity in the implementation.A much simpler way to reformulate immersed interface problems consists in replacing the interface by a singular force field that produces the desired interface conditions, as done in immersed boundary methods. These methods are known to have inferior convergence properties, depending on the global regularity of the solution across the interface, when compared to enriched methods.In this work we prove that this detrimental effect on the convergence properties of the approximate solution is only a local phenomenon, restricted to a small neighbourhood of the interface. In particular we show that optimal approximations can be constructed in a natural and inexpensive way, simply by reformulating the problem in a distributionally consistent way, and by resorting to weighted norms when computing the global error of the approximation. (C) 2019 Elsevier Ltd. All rights reserved.
机译:当在包含浸没接口的区域中求解椭圆局部微分方程(可能发生在时间)的区域中,通常希望使用独立的背景离散化来近似问题,而不是与接口本身对齐。如果通过允许离散的解决方案跳跃与表面跳跃,则可以实现最佳收敛速率,以更高的复杂性,在实现中更高的复杂性。更简单的方式来重新浸入浸入接口问题,其中包括更换界面一种奇异的力场,其产生所需的界面条件,如浸没边界方法所做的那样。已知这些方法具有较差的收敛性,这取决于界面的解决方案的全球规律性,与富集的方法相比。在这项工作中,我们证明了对近似解决方案的收敛性的这种有害影响是仅为当地的局部现象,限于界面的一个小邻居。特别地,我们表明,可以以自然和廉价的方式构建最佳近似,简单地通过以分布一致的方式重新重新重新重新重构问题,并且在计算近似的全局误差时加权规范。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号