首页> 外文期刊>Computers & mathematics with applications >A parabolic level set reinitialisation method using a discontinuous Galerkin discretisation
【24h】

A parabolic level set reinitialisation method using a discontinuous Galerkin discretisation

机译:一种抛物面水平设定使用不连续的Galerkin自分离的重新磨削方法

获取原文
获取原文并翻译 | 示例

摘要

Level set reinitialisation is a part of the level set methodology which allows one to generate, at any point during level set evolution, a level set function which is a signed distance function to its own zero isocontour. Whilst not in general a required condition, maintaining the level set function as a signed distance function is often desirable as it removes a known source of numerical instability. This paper presents a novel level set reinitialisation method based on the solution of a nonlinear parabolic PDE. The PDE is discretised using a symmetric interior penalty discontinuous Galerkin method in space, and an implicit Euler method in time. Also explored are explicit and semi-implicit time discretisations, however, numerical experiments demonstrate that such methods suffer from severe time step restrictions, leading to prohibitively large numbers of iterations required to achieve convergence. The proposed method is shown to be high-order accurate through a number of numerical examples. More specifically, the presented experimental orders of convergence align with the well established optimal convergence rates for the symmetric interior penalty method; that is the error in the L-2 norm decreases proportionally to h(p+1) and the error in the DC norm decreases proportionally to h(p). (C) 2019 The Author(s). Published by Elsevier Ltd.
机译:级别设置重新初始化是级别设置方法的一部分,它允许在级别设置演变期间的任何时候生成一个级别设置功能,该函数是归距函数的零Isocontour。虽然不一般是所需的条件,但是将级别集合的函数保持为符号距离函数通常是可取的,因为它去除了数值不稳定性的已知源。本文介绍了基于非线性抛物线PDE溶液的新型水平设定重新磨削方法。在空间中使用对称的内部惩罚不连续的Galerkin方法和隐式欧拉方法是离散的。此外,还探索了明确的和半隐式的时间偏移,然而,数值实验表明,这些方法遭受了严重的时间步长限制,导致达到达到趋同所需的大量迭代。所提出的方法通过许多数值示例显示了高阶准确。更具体地,提出的趋同性的收敛性能与对称内部惩罚方法的良好建立的最佳收敛速率对齐;这是L-2规范中的误差比成比地降低到H(p + 1),并且DC规范中的误差比以比例成比例为H(P)。 (c)2019年作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号