首页> 外文期刊>Computers & mathematics with applications >Fixed point implementation of a variational time integrator approach for smoothed particle hydrodynamics simulation of fluids
【24h】

Fixed point implementation of a variational time integrator approach for smoothed particle hydrodynamics simulation of fluids

机译:变分时间积分器方法的定点实现,用于流体的平滑粒子流体动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

Variational time integrators are derived in the context of discrete mechanical systems. In this area, the governing equations for the motion of the mechanical system are built following two steps: (a) Postulating a discrete action; (b) Computing the stationary point of the discrete action. The former is formulated by considering Lagrangian (or Hamiltonian) systems with the discrete action being constructed through numerical approximations of the action integral. The latter derives the discrete Euler-Lagrange equations whose solutions give the variational time integrator. In this paper, we build variational time integrators in the context of smoothed particle hydrodynamics (SPH). So, we start with a variational formulation of SPH for fluids. Then, we apply the generalized midpoint rule, which depends on a parameter a, in order to generate the discrete action. Then, the step (b) yields a variational time integration scheme that reduces to an explicit approach if alpha is an element of {0, 1} but it is implicit otherwise. Hence, we design a fixed point iterative method to approximate the solution and prove its convergence condition. Besides, we show that the obtained discrete Euler-Lagrange equations preserve linear momentum. In the experimental results, we simulate a bubble flow and a dam breaking set up and consider viscosity as well as boundary interaction effects. We compare standard and implicit SPH solutions. We analyze linear momentum conservation and other benchmark quantities to conclude that the proposed algorithm is accurate and preserves the linear momentum better than the counterpart one for dam breaking set up. (C) 2019 Elsevier Ltd. All rights reserved.
机译:变分时间积分器是在离散机械系统的背景下得出的。在该区域中,机械系统运动的控制方程式分为两个步骤:(a)提出离散作用; (b)计算离散动作的静止点。前者是通过考虑拉格朗日(或哈密顿)系统来制定的,其中离散作用是通过作用积分的数值近似来构造的。后者推导了离散的Euler-Lagrange方程,其解给出了变分时间积分器。在本文中,我们在平滑粒子流体动力学(SPH)的背景下建立了变分时间积分器。因此,我们从流体SPH的变体公式开始。然后,我们应用取决于参数a的广义中点规则,以生成离散操作。然后,步骤(b)产生了一个变分时间积分方案,如果alpha是{0,1}的一个元素,则该时间积分方案可以简化为一种显式方法,但否则为隐式。因此,我们设计了一个定点迭代方法来逼近解并证明其收敛条件。此外,我们证明了所获得的离散的Euler-Lagrange方程保持了线性动量。在实验结果中,我们模拟了气泡流动和溃坝,并考虑了粘度以及边界相互作用的影响。我们比较标准和隐式SPH解决方案。我们分析了线性动量守恒和其他基准量,得出的结论是,所提出的算法是准确的,并且其线性动量要比大坝破损的线性动量更好。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号