首页> 外文期刊>Computers & mathematics with applications >Newton-type Gauss-Seidel Lax-Friedrichs high-order fast sweeping methods for solving generalized eikonal equations at large-scale discretization
【24h】

Newton-type Gauss-Seidel Lax-Friedrichs high-order fast sweeping methods for solving generalized eikonal equations at large-scale discretization

机译:牛顿型高斯-塞德尔·拉克斯·弗里德里希斯高阶快速扫描方法,用于大规模离散化求解广义电子方程

获取原文
获取原文并翻译 | 示例

摘要

We propose a Newton-type Gauss-Seidel Lax-Friedrichs sweeping method to solve the generalized eikonal equation arising from wave propagation in a moving fluid. The Lax-Friedrichs numerical Hamiltonian is used in discretization of the generalized eikonal equation. Different from traditional Lax-Friedrichs sweeping algorithms, we design a novel approach with a line-wise sweeping strategy. In the local solver, the values of traveltime on an entire line are updated simultaneously by Newton's method. The global solution is then obtained by Gauss-Seidel iterations with line-wise sweepings. We first develop the Newton-based first-order scheme, and on top of that we further develop high-order schemes by applying weighted essentially non-oscillatory (WEND) approximations to derivatives. Extensive 2-D and 3-D numerical examples demonstrate the efficiency and accuracy of the new algorithm. The combination of Newton's method and Gauss-Seidel iterations improves upon the convergence speed of the original Lax-Friedrichs sweeping algorithm. In addition, the Newton-type sweeping method manipulates data in a vectorized manner so that it can be efficiently implemented in modern programming languages that feature array programming, and the resulting advantages are extremely significant for large-scale 3-D computations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们提出一种牛顿型高斯-塞德尔·拉克斯-弗里德里希斯(Gauss-Seidel Lax-Friedrichs)扫频方法,以解决由于波在运动流体中传播而产生的广义方程。 Lax-Friedrichs数值哈密顿量用于广义Eikonal方程的离散化。与传统的Lax-Friedrichs扫描算法不同,我们设计了一种具有逐行扫描策略的新颖方法。在本地求解器中,通过牛顿法同时更新整行的行进时间值。然后,通过高斯-塞德尔迭代以及逐行扫描获得全局解。我们首先开发基于牛顿的一阶方案,最重要的是,我们通过将加权的基本非振荡(WEND)近似值应用于导数来进一步开发高阶方案。大量的2D和3D数值示例说明了新算法的效率和准确性。牛顿方法和高斯-赛德尔迭代的结合提高了原始Lax-Friedrichs扫描算法的收敛速度。另外,牛顿型清扫方法以矢量化的方式处理数据,以便可以在以数组编程为特征的现代编程语言中有效地实现该方法,并且所产生的优势对于大规模3D计算极为重要。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号