首页> 外文期刊>Computers & mathematics with applications >A family of quadratic finite volume element schemes over triangular meshes for elliptic equations
【24h】

A family of quadratic finite volume element schemes over triangular meshes for elliptic equations

机译:三角形方程组上三角形网格上的二次有限体积单元格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we construct and analyze a family of quadratic finite volume element schemes over triangular meshes for elliptic equations. This family of schemes cover some existing quadratic schemes. For these schemes, by element analysis, we find that each element matrix can be split as two parts : the first part is the element stiffness matrix of the standard quadratic finite element method, while the second part is a tensor product of two vectors. Thanks to this finding, we obtain a sufficient condition to ensure the existence, uniqueness and coercivity result of the finite volume element solution on triangular meshes. More interesting is that, the above condition has a simple and analytic expression, and only relies on the interior angles of each triangular element. Based on this result, a minimum angle condition, better than some existing ones, can be obtained. Moreover, based on the coercivity result, we prove that the finite volume element solution converges to the exact solution with an optimal convergence rate in H-1 norm. Finally, some numerical examples are provided to validate the theoretical findings. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,我们构造和分析了三角形网格上椭圆方程的一类二次有限体积单元方案。该系列方案涵盖了一些现有的二次方案。对于这些方案,通过元素分析,我们发现每个元素矩阵都可以分为两部分:第一部分是标准二次有限元方法的元素刚度矩阵,而第二部分是两个向量的张量积。由于这一发现,我们获得了充分的条件来确保三角形网格上有限体积单元解的存在性,唯一性和矫顽性结果。更有趣的是,上述条件具有简单的解析表达式,并且仅依赖于每个三角形元素的内角。基于此结果,可以获得比某些现有角度更好的最小角度条件。此外,基于矫顽力结果,我们证明了有限体积单元解在H-1范数下以最优收敛速度收敛到精确解。最后,提供一些数值例子来验证理论发现。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号