首页> 外文期刊>Computers & mathematics with applications >Power-law fluid flow in driven enclosures with undulation using MRT-lattice Boltzmann method
【24h】

Power-law fluid flow in driven enclosures with undulation using MRT-lattice Boltzmann method

机译:使用MRT-格子Boltzmann方法在带波动的驱动机壳中的幂律流体流动

获取原文
获取原文并翻译 | 示例

摘要

In this article, the flow of non-Newtonian fluid (which is represented by the power-law model) in two-dimensional (2D) driven enclosures is studied. The enclosure consists of regular, rectangular shaped undulations on the bottom wall. Multiple-Relaxation time (MRT) collision model for the lattice Boltzmann equation method (LBM) is employed. First, numerical validation is performed by comparing the MRT-LBM results of power-law fluid flow inside the wall-driven square enclosure (no undulation) and flow inside diagonally flipped L-shaped enclosure with the literature. The strain rate profiles for square enclosure without undulations are compared using various equations available for strain rate calculation in the LBM literature. Further, the effect of different values of the non hydrodynamic relaxation parameters on the flow is examined. Then, for the undulated enclosures, flow features and eddy dynamics are analyzed and discussed for the variations in the power-law index, n, to represent shear-thinning and shear thickening fluids. The effects of various parameters such as Reynolds numbers, wall undulation heights and wavelength of undulations on the power-law fluid flow are analyzed. Also, the variation of viscosity with spatial location for steady-state flow and total kinetic energy within the computational domain are presented for various values of power-law index. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,研究了二维(2D)驱动壳体中非牛顿流体(由幂律模型表示)的流动。外壳由底壁上规则的矩形起伏组成。采用格子时间玻尔兹曼方程法(LBM)的多重弛豫时间(MRT)碰撞模型。首先,通过将MRT-LBM幂律流体在壁驱动方形外壳内部流动(无起伏)和对角翻转L形外壳内部流动的MRT-LBM结果与文献进行比较,来进行数值验证。使用LBM文献中可用于应变率计算的各种方程式比较无波动的方形外壳的应变率曲线。此外,检查了非流体动力松弛参数的不同值对流动的影响。然后,对于起伏的围护,分析并讨论了幂律指数n的变化,以表示剪切稀化和剪切增稠流体的流动特征和涡流动力学。分析了雷诺数,壁面起伏高度和起伏波长等各种参数对幂律流体流动的影响。此外,对于幂律指数的各种值,还给出了稳态范围内粘度随空间位置的变化以及计算域内的总动能。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号