首页> 外文期刊>Computers & mathematics with applications >An accelerated cyclic-reduction-based solvent method for solving quadratic eigenvalue problem of gyroscopic systems
【24h】

An accelerated cyclic-reduction-based solvent method for solving quadratic eigenvalue problem of gyroscopic systems

机译:陀螺系统二次特征值问题的基于加速循环还原的溶剂方法

获取原文
获取原文并翻译 | 示例

摘要

The quadratic eigenvalue problem (QEP) (lambda M-2 +lambda G+K)x = 0, with M-T = M being positive definite, K-T = K being negative definite and G(T) = -G, is associated with gyroscopic systems. In Guo (2004), a cyclic-reduction-based solvent (CRS) method was proposed to compute all eigenvalues of the above mentioned QEP. Firstly, the problem is converted to find a suitable solvent of the quadratic matrix equation (QME) MX2 + GX + K = 0. Then using a Cayley transformation and a proper substitution, the QME is transformed into the nonlinear matrix equation (NME) Z + A(T)Z(-1)A = Q with A = M + K +G and Q = 2(M - K). The problem finally can be solved by applying the CR method to obtain the maximal symmetric positive definite solution of the NME as long as the QEP has no eigenvalues on the imaginary axis or for some cases where the QEP has eigenvalues on the imaginary axis. However, when all eigenvalues of the QEP are far away from or near the origin, the Cayley transformation seems not to be the best one and the convergence rate of the CRS method proposed in Guo (2004) might be further improved. In this paper, inspired by using a doubling algorithm to solve the QME, we use a MObius transformation instead of the Cayley transformation to present an accelerated CRS (ACRS) method for solving the QEP of gyroscopic systems. In addition, we discuss the selection strategies of optimal parameter for the ACRS method. Numerical results demonstrate the efficiency of our method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:二次特征值问题(QEP)(lambda M-2 + lambda G + K)x = 0,其中MT = M为正定,KT = K为负定,G(T)= -G与陀螺仪系统相关。在Guo(2004)中,提出了一种基于循环还原的溶剂(CRS)方法来计算上述QEP的所有特征值。首先,将问题转换为找到适合的二次矩阵方程(QME)MX2 + GX + K = 0的溶剂。然后使用Cayley变换和适当的替换,将QME转换为非线性矩阵方程(NME)Z + A(T)Z(-1)A = Q,其中A = M + K + G,Q = 2(M-K)。只要QEP在虚轴上没有特征值,或者在某些情况下QEP在虚轴上具有特征值,就可以通过应用CR方法获得NME的最大对称正定解来最终解决该问题。但是,当QEP的所有特征值都远离或接近原点时,Cayley变换似乎不是最佳变换,并且Guo(2004)中提出的CRS方法的收敛速度可能会进一步提高。在本文中,受使用倍增算法求解QME的启发,我们使用MObius变换而不是Cayley变换来提出加速CRS(ACRS)方法来解决陀螺系统的QEP。此外,我们讨论了ACRS方法的最佳参数选择策略。数值结果证明了我们方法的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号