首页> 外文期刊>Computers & mathematics with applications >Unsteady micropolar fluid flow in a thin domain with Tresca fluid-solid interface law
【24h】

Unsteady micropolar fluid flow in a thin domain with Tresca fluid-solid interface law

机译:利用Tresca流固界面法在薄域中不稳定的微极性流体流动

获取原文
获取原文并翻译 | 示例

摘要

We consider a micropolar fluid flow in a two-dimensional domain. We assume that the velocity field satisfies a non-linear slip boundary condition of friction type on a part of the boundary while the micro-rotation field satisfies non-homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of a solution. Then motivated by lubrication problems we assume that the thickness and the roughness of the domain are of order 0 epsilon 1 and we study the asymptotic behaviour of the flow as e tends to zero. By using the two-scale convergence technique we derive the limit problem which is totally decoupled for the limit velocity and pressure (upsilon(0), p(0)) on one hand and the limit micro-rotation Z(0) on the other hand. Moreover we prove that upsilon(0), p(0) and Z(0) are uniquely determined via auxiliary well-posed problems. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们考虑了二维域中的微极性流体流动。我们假设速度场在边界的一部分上满足摩擦类型的非线性滑移边界条件,而微旋转场则满足非齐次Dirichlet边界条件。我们证明了解决方案的存在性和唯一性。然后,受润滑问题的影响,我们假设磁畴的厚度和粗糙度为0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号