首页> 外文期刊>Computers & mathematics with applications >An upper J-Hessenberg reduction of a matrix through symplectic Householder transformations
【24h】

An upper J-Hessenberg reduction of a matrix through symplectic Householder transformations

机译:通过辛格Householder变换对矩阵进行上J-Hessenberg约简

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a reduction of a matrix to a condensed form, the upper J-Hessenberg form, via elementary symplectic Householder transformations, which are rank-one modification of the identity. Features of the reduction are highlighted and a general algorithm is derived. Then, we study different possibilities to specify the general algorithm in order to built better versions. We are led to two variants numerically more stables that we compare to JHESS algorithm. Also, some numerical experiments for comparing the different algorithms are given. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,我们通过基本辛格勒Householder变换,将矩阵简化为浓缩形式,即上部J-Hessenberg形式,这是恒等式的一种修改。强调了减少的特征,并推导了通用算法。然后,我们研究了指定通用算法的不同可能性,以构建更好的版本。我们得出了与JHESS算法相比在数值上更稳定的两个变体。另外,给出了一些用于比较不同算法的数值实验。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号